ARM 36,22,307, 601, 605, 1003, 1004, 1011, 1013, 1103, 1222, 1240, 1301, 1306, 1309, and 1417

Submit In Quadruplicate To:

MONTANA BOARD OF OIL AND GAS CONSERVATION 2535 ST. JOHNS AVENUE BILLINGS, MONTANA 59102

S	SUNDRY NOTICES	AND REPO	RT OF WELLS				
Operator Denbury Onshore, I	LC		Lease Name: Unit .				
Address 5320 Legacy Drive			Type (Private/State/Federal/Tribal/Allotted):				
City Plano State	TX Zip Code 750	24	Fee RECEI	VED			
			Well Number: 904				
0,2 0,0 2000			MAR - 8	2018			
Location of well (1/4-1/4 section an NW - NW Sec. 9, T9S - R54E	d footage measurements): 660' FNL & 660' FWL		Unit Agreement Name: BCCMU MONTANA BOAR	D OF OIL			
			Field Name or Wildcat:	M . DIFT			
			Bell Creek				
		_	Township, Range, and Section:				
API Number:	Well Type (oil, gas, inje	ection, other);	T9S - R54E, Sec. 9				
25 075 21734 State County Well	Oil		County: Powder River, MT				
Indicate below with an X the nature	of this notice, report, or of	her data:		\neg			
Notice of Intention to Change Plans		Subseque	ent Report of Mechanical Integrity Test	\neg			
Notice of Intention to Run Mechanic	10.		Subsequent Report of Stimulation or Treatment				
Notice of Intention to Stimulate or to	Chemically Treat	Subseque	ent Report of Perforation or Cementing				
Notice of Intention to Perforate or to	Cement	☐ Subseque	Subsequent Report of Well Abandonment				
Notice of Intention to Abandon Wel		☐ Subseque	Subsequent Report of Well Abandonment Subsequent Report of Pulled or Altered Casing Subsequent Report of Drilling Waste Disposal				
Notice of Intention to Pull or Alter C		=34	Subsequent Report of Drilling Waste Disposal				
Notice of Intention to Change Well	Status	=31	Subsequent Report of Production Waste Disposal				
Supplemental Well History			Subsequent Report of Change in Well Status				
Other (specify) Fracture Stimulat	e	Subseque	Subsequent Report of Gas Analysis (ARM 36.22.1222)				
	L Describe Proposed	or Completed	Onarations:	.,			
necessary. Indicate the intended starting Denbury requests approval to fra	detail. Attach maps, well-bore ng date for proposed operation acture stimulate the subject atment report has been in	e configuration dia s or the completi ect well. Pleas	agrams, analyses, or other information as	ram			
			signed hereby certifies that the information contained ation is true and correct:	on			
BOARD USE	ONLY	41	Welle 11/11				
Approved MAR 1 3 2018 Date	_	03/06/ Da	2018 / WWW J WWW atte Signed (Agent)	2			
3-1-	Potroleum Enjineer	, Naom	i Johnson - Regulatory Compliance Specia Print Name and Title	list			
Name	Title	Telephone	972-673-2000				

SUPPLEMENTAL INFORMATION

NOTE: Additional information or attachments may be required by Rule or by special request.

Plot the location of the well or site that is the subject of this notice or report.

BOARD USE ONLY

CONDITIONS OF APPROVAL

The operator must comply with the following condition(s) of approval:

RECEIVED

MAR - 8 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

Failure to comply with the conditions of approval may void this permit.

PROCEDURE To Stimulate Well

Bell Creek Unit 09-04

Sec 9 – T9S - R54E API # 25075217340000

Powder River County, MONTANA This is a FEE well

OBJECTIVE OF OPERATION:

Pull internal capstring - Test production tubing to treating pressure – Perform small hydraulic fracture stimulation on the Muddy– Flow back well - Release to Production

Notes on well

- 1. Coil reran Capstring in 2015. Cleaned to PBTD. No issues running through. Only some paraffin in returns.
- 2. Last time rig on well in 2013. No issues cleaning to PBTD through CICR. Perforated new section in bottom of muddy.
- 3. TA'd in 1992. Also no problem getting to PBTD. No cement in the Muddy.
- 4. 1988 set to acidize but never did.
- 5. Frac'd in 1975. SCREEN'd out 1st stage after the pad. (NO SAND in the formation).
- 6. Re-perforated in 1973 in the middle of the zone.
- 7. Frac'd during completion with 20,000# of 10/20 sand.

- 9. NOTE: Check local Well File before beginning job.
- 10. Pre-Job: Confirm Sundry approval. Secure Wellhead, Flowline, and Electrical. Notify BLM/State as required.
- 11. MIRU Capstring Pulling Unit. POOH w/ 38" internal Capstring. RDMO Capstring Pulling Unit.
 - a. Spool Capstring and place in yard for further inspection.
- 12. MIRU SL. RIH with 1-1/4" bailer and tag bottom. Record depth. TOOH. RDMO SL.
 - a. Notify Plano if tag high for path forward. Jar for sample if high.
- 13. MIRU Hot-oiler. PT Production Casing as directed below. RDMO Hot-oiler.
 - a. Test to a maximum anticipated PCP of 1500psi for 15 min. Chart it no more than 10% pressure loss.
 - i. If casing fails contact Plano for procedure moving forward.
- 14. MIRU SL. PU PX plug. RIH & set in XN nipple below the packer. TOOH. RDMO SL.
- 15. Bleed off pressure and ensure tubing & casing are dead.
- 16. Install BPV. ND WH. NU BOP. Test as per Denbury Standards. Remove BPV.
- 17. Install 2-3/8" to 2-7/8" Xover, 6ft 2-7/8" L-80 pup, 2-7/8 to 3" 1502 Xover, & 3" 1502 Plug Valve.
- 18. Close Pipe Rams. MIRU Clean Hot-oiler. PT tubing as directed below. RDMO Hot-oiler.
 - a. Test tubing to maximum anticipated treating pressure @5000# for 15 minutes. Chart it no more than 10% pressure loss. Hold 1000# on the backside (As anticipated for job).
 - i. If tubing fails contact Plano for procedure moving forward.
 - b. Bleed off casing to 0psi and tubing to SI pressure when prong was set.
- 19. MIRU SL. RIH and retrieve prong & PX plug.
- 20. PU BHP gauges. RIH and take BHP mid-perf. POOH. RDMO SL.
- 21. MIRU 400bbl upright tank. Ensure clean use hot-oiler if necessary.
 - a. Fill tank with 400bbls of BIDDLE water.
- 22. MI Flowback Tank and 1502 iron for Flowback/ Frac Operation Relief if necessary.
- 23. MIRU Hot-oiler. Roll tank to 80-100degF (depending on the Weather). RDMO Hot-oiler.
- 24. MIRU Frac Company & Equipment. (Estimated 4-8 hr job -22 minutes to pump time).
 - a. Frac Company responsible for 22,000# 20/40 sand, frac fluid additives, and all frac equipment.

Frac Additives						
		LOADING PER/1000 GALLONS				
Materials	U.O.M.	Fluid 1 1.910	Fluid 2 10,250	<u>Totals</u>		
WG-1SLR, Slurried Guar Gel	gal	5	5	61		
NE-1, Non Emulsifier (Nonionic)	gal	2	2	25		
BIO-2L, Liquid Biocide (THPS)	gal	0	0.2	3		
Buffer-4L, High pH (sodium hydroxide)	gal	0	0.1	2		
XLB-1, Self Buffered Borate Crosslinker	gal	0	1.5	16		
B-4LE, High pH/Low Temp. <140°F Enzyme Break	gal	0	0.3	4		
B-1, Oxidizer Breaker (AP)	gal	1	1	13		
KCL-2Sub, KCl Substitute (anionic product toleran	gal	2	2	25		

- b. 2 pressure relief valves will be installed on treating lines between pumps and wellhead to limit the line pressure to max anticipated treating pressure.
- c. Pressure the Production Casing to 800-1000psi prior to job. Hold & monitor with gauge. Set pop-off at 1400psi (100psi less than PT).
- 25. Close 3" Plug Valve. Install 3" Hydraulic valve &test to treating pressure prior to frac.

- a. Hydraulic valve will be hooked up during frac to accumulator and serve as the remote controlled shut-in device AT THE WELL HEAD.
- 26. Perform breaker test with Biddle water from tank/X-linker & Breaker prior to job.
 - a. Record, time/strength Xlinked, any visible residuals, and ensure fluid breaks prior to pumping.
- 27. Establish 8-10bpm injection rate with 20# gel for 30 bbls. Record ISIP.
 - a. Note friction pressure of 20# gel.
- 28. Pump the program recommended and attached. Hook up Frac equipment to pull off of 400bbl upright. Hook up diverter line to the flowback equipment.
 - a. Note additional friction pressure from X-linker.
 - **b.** Subject to additional pumping depending on pressures.
 - c. Prior to Flush Drop tub level and bypass tub @4ppg CONCENTRATION
 - **d.** Call flush based on densometer. 3.5 or greater if decide higher concentration.
 - i. Talk to Frac company about bypassing or dropping tub level prior to flush.
 - e. End flush 1bbl prior to perforations. Do NOT over flush. (BH concentration 4ppg).

	Frac Schedule								
STG	Proppant	Stage	Fluid Type or	Proppant Type or	Stage/lbs.	Clean	Clean	Slurry	Stage
No.	Lbs./Gal.	Gals.	Comment	Stage Description	Proppant	Rate	Bbls.	Bbls	Time.
1	0	1260	20# Linear	Pre-Pad	<u>₩</u> 0	10	30	10	3
2	0	3000	20# X-Link	Pad	<u></u>	10	71	71	7.1
3	1	1500	20# X-Link	SLF 16/30 White	1,500	9.6	36	37	3.7
4	2	1500	20# X-Link	SLF 16/30 White	3,000	9.2	36	39	3.9
5	3	1500	20# X-Link	SLF 16/30 White	4,500	8.8	36	41	4.1
6	4	1500	20# X-Link	SLF 16/30 White	11,000	8.5	65	77	4.2
7	0	500	20# Linear	Flush	-	10	16.15	16.15	2.5

- 29. Record the ISIP @5, 10, & 15 minutes after pumping.
- 30. RDMO Frac Company & Equipment.
 - a. Send pump chart and other necessary data to the Plano office.
- 31. RU 1502 iron & manifold to Gas Buster. Flowback the well as directed by Plano.
 - a. Start 9ck. Maximum 1bpm. Expect sand bottoms up. Monitor sand returns for following 40 bbls. (fill 5 gal bucket 8 seconds)
 - b. Flowback 110% volume pumped. Do NOT flow back greater than 2BPM.
- 32. MIRU slickline. RIH w/ 1-1/4" bailer and tag TD. Record depth. TOOH.
 - a. Notify Plano if tag high before moving forward. Jar for sample if high.
- 33. PU PX plug. RIH and set in X nipple above packer in SA. TOOH. RD SL. Bleed tubing Opsi.
- 34. Install BPV. RD BOP and associated equipment. NU Wellhead. Test. Remove BPV.
- 35. MIRU Clean Hot-oiler. Pressure up tubing to SI pressure when prong was set. RDMO Hot-oiler.
- 36. RU SL. RIH and retrieve PX plug in SA. TOOH. RDMO SL.
- 37. MIRU CTU if tagged high. Clean out to PBTD. RDMO CTU.
- 38. Release to operations.

Denbury Onshore LLC Bell Creek

Broadus, MT
BCU Vertical Fracs
Sand Frac
Per Well, 2 Wells/day

Prepared for: Mr. Charlie Hagan Denbury Onshore LLC 972-673-2172 charlie.hagan@denbury.com

Prepared by: Rick Boyce
QES PRESSURE PUMPING LLC
(307) 388-4331

February 8, 2018

Service Point: Gillette, WY: (307) 686-4914

Account Manager: Rick Boyce (307) 388-4331

DISCLAIMER NOTICE

This technical data is presented in good faith and QES Pressure Pumping LLC assumes no liability for recommendations or advice made concerning results to be obtained from the use of any products or service. The prices quoted are only estimates and may vary depending on equipment, materials used, hours and the work actually performed. Pricing does not include federal, state & local taxes that may apply. This quotation will remain in effect for 45 days from the date on proposal unless otherwise stated.

RECEIVED

Writer Version 3.5!

JOB DATA

Purpose Of Treatment:

Enhance Production

Job Type:

Sand Frac

Treating Conductor:

Est. Average Pump Rate (bpm):

10

Est. Average. Treating PSI:

Max. Pressure (psi):

Fluid Requirements:	Fluid Description	Volume	U.O.M.
	20# Linear	1,910	Gallon
	20# Xlink	10,250	Gallon
oppant/Divert Requiremen	ts: Proppant/Divert Description	Volume	U.O.M
oppano overe requiremen	16/30 Northern White Sand	20,000	lb
	1000 Northern Winte Dana	20,000	 "
Well/Job Data:	Well/Job Data Description		
		2	

Information/Directions/Comments:

QES Pressure Pumping LLC may incorporate the daily use of Knight Fire Suppression Systems (Fire Suppressant System/Certified Firefighter/EMT Personnel) on all fracturing jobs for the safety of "ALL" personnel & equipment on the well site during the pressure pumping operation.

KECETAED

MAR - 8 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

FLUID DESCRIPTION

Fluid 1: 20# Linear Fluid 2: 20# Xlink

			LOADING PER/1000 GALLONS								
MATERIAL'S	U.O.M.	Fluid 1	Fluid 2 10,250	Fluid 3	Fluid 4	Fluid 5	Fluid 6	Fluid 7:	Fluid 8	Fluid 9	Totals
WG-1SLR, Slurried Guar Gel	gal	5.00	5.00								61
NE-1, Non Emulsifier (Nonionic)	gal	2.00	2.00								25
BIO-2L, Liquid Biocide (THPS)	gal	0.20	0.20								3
Buffer-4L, High pH (sodium hydroxide)	gal		0.10								2
XLB-1, Self Buffered Borate Crosslinker	gal		1.50								16
B-4LE, High pH/Low Temp. <140°F Enzyme Break	gal		0.30								4
B-1, Oxidizer Breaker (AP)	lb	1.00	1.00								13
KCL-2Sub, KCl Substitute (anionic product tolerar	gal	2.00	2.00								25
											0
											0
											0
											0
											0
											0
											0
											0

Fluid and Storage Requirements:

RECEIVED

Pump Schedule

Maximum Pressure (psi): Est. Treating Pressure (psi):

(Company)	I West House State	CONTRACT OF	\$140.00 (\$100.00)	Est. Treating Pressure (psi):		79 0	TOP WOOD	LOUIS CONTRACTOR OF THE PARTY O	Established	Treasure T
STG	Proppant	Stage	Fluid Type	Proppant Type or	Stage/lbs.	Clean Rate	Clean	Slurry Rate	Slurry	Stage
No.	Lbs./Gal.	Gals.	or Comment	Stage Description	Proppant	(bpm)	Bbls.	(bpm)	Bbls.	Time
1		1,260	20# Linear	Pre-Pad		10.0	30	10	30	3.0
2		3,000	20# X-Link	Pad		10.0	71	10	71	7.1
3	1	1,500	20# X-Link	SLF 16/30 White	1,500	9.6	36	10	37	3.7
4	2	1,500	20# X-Link	SLF 16/30 White	3,000	9.2	36	10	39	3.9
		1,500	20# X - Link	SLF 10/30 White	4.500	0.0	36	10		
5	3	1,500	20# X-Link	SLF 16/30 White	4,500	8.8	36	10	41	4.1
6	4	2,750	20# X-Link	SLF 16/30 White	11,000	8.5	65	10	77	7.7
7		650	20# Linear	Flush		10.0	15	10	15	1.5
-										
							ļ			
-				-						
-										
\vdash					-					
\vdash										
\vdash										-
-										
							_			-
-			·							
		-			-					
-										-
	ľ.									
			1							
				-						
-		-								
										-
\vdash										\vdash
\vdash									 	-
— I				U.						-
										\vdash
										$\overline{}$
		Ú								
		ii i								
										\vdash
\vdash										\vdash
-										
	Transfer	Manufacture.			20,000.00		2000		311 991	0.824
	Totals	12,160 gls			20,000 lbs		290 bbl		→ 1:1 bb1	0.52 hrs
				Pump Schedule Comments:						
							-	THE STATE OF THE	m end to in inc	III SANSON

RECEIVED

CAS INFORMATION:

Additive	Max Loading 1000 Gal	Specific Gravity	Additive Quantity	Mass (lbs)
WATER (Customer Supplied)	1,000,00	1,00	1.7,160	101,475
WG-ISLR, GUAR SLURRY	5.00	1,04	61	530
NE-I, NON EMULSIFIER	0.50	0.95	25	198
BIO-2L, BIOCIDE	0.20	1,00	3	25
BUFFER-4L		1,22	2	20
XLB-1, CROSSLINKER	1_00	1,36	16	181
B-4LE, ENZYME BREAKER	2.00	1,03	-4	34
B-I, BREAKER	1,00	2,55	13	13
KCI-2SUB, KCI SUBSTITUTE	0.50	1.08	25	226
NORTHERN WHITE SAND	4.00	2.65	20,000	20,000

Total Slurry Mass (Lbs)
122,704

Name	Ingredients	Chemical Abstract Service Number (CAS ∄)	Maximum Ingredient Concentration in Additive (% by mass)**	Total Component Mass in HF Fluid (lbs)	Maximum Ingredient Concentration in HF Fluid (% by mass)**
WATER (Customer Supplied)	Water	7732-18-5	100,00%	101,475	82.69918%
NORTHERN WHITE SAND	Silica Quartz	14808-60-7	100,00%	20.000	16.29939%
WG-ISLR, GUAR SLURRY	Solvent Naptha (pet.) heavy aliphatic	64742-47-8	60,00%	318	0.25937%
WG-ISLR, GUAR SLURRY	Guar Gum	9000-30-0	50,00%	265	0.21614%
NE-1, NON EMULSIFIER	Methanol	67-56-1	30.00%	60	0.04851%
VOLACION VOLOUDOTETUTE	Choline Chloride	67-48-1	70.00%	158	0.12878%
KCI-2SUB, KCI SUBSTITUTE	Water	7732-18-5	30.00%	68	0.05519%
BUFFER -4L	Sodium Hydroxide	1310-73-2	30.00%	6	0.00498%
BUFFER -IL	Water	7732-18-5	70.00%	14	0.01162%
	Sodium Tetraborate Decahydrate	1303-96-4	30.00%	54	0.04436%
XLB-1, CROSSLINKER	Alkyl Alcohol C10-C16	67762-41-8	30.00%	54	0.04436%
	Sodium Hydroxide	1310-73-2	30.00%	54	0.04436%
B-1, BREAKER	Ammonium persulfate	7727-54-0	100,00%	13	0.01059%
	Water	7732-18-5	90.00%	31	0.02522%
B-4LE, ENZYME BREAKER	Sodium Chloride	7647-14-5	15.00%	5	0.00420%
	Mannanase Enzymes	37288-54-3	2.00%	1	0.00056%
BIO 31 DIOCIDE	Tetrakis(hydroxymethyl) Phosphonium Sulfate	55566-30-8	20.00%	5	0.00408%
BIO-2L, BIOCIDE	Water	7732-18-5	80.00%	20	0.01632%

100.00%

PRODUCT DESCRIPTION

	TROBOOT BECOKII FICH
EQC461	WG-1SLR, Slurried Guar Gel
FC5451 General Information	WG-1SLR, Slurried Guar Gel is a preslurried form of a high-yield guar gum for preparing fracturing fluids. It provides exceptionally fast, "fisheye"-free hydration even in cold water.
Uses & Applications	WG-1SLR, Slurried Guar Gel can be used wherever conventional guar is used. The slurry is 4 pounds of guar per gallon of slurry. The rapid hydration allows "on the fly" mixing with fairly low-volume hydration tank in line to the blender.
Density in Sp.Gr.	1.019
Specs	Tan/yellowish slurry liquid-Water soluble
	NE-1, Non Emulsifier (Nonionic)
FC5575	30.
General Information	NE-1 is a highly effective inexpensive nonionic nonemulsifier for oilfield acid and fracs.
Uses & Applications	NE-1 typically is used at 1 to 4 gpt.
Density in Sp.Gr.	0.898
Specs	Pale yellow liquid-Water soluble
-	BIO-2L, Liquid Biocide (THPS)
FC5281 General Information	BIO-2L, Liquid is a liquid biocide based on Tetrakis (Hydroxymethal) Phosphonium Sulfate) (THPS), for use in oilfield water applications such as fracturing fluids. Used as directed, it is a highly effective and economical in controlling most sulfate -reducing and acid-producing bacteria as well as algae and fungi. Biocide, Liquid penetrates biofilms and works synergistically with chlorine- and bromine- based biocides.
Uses & Applications	BIO-2L, Liquid is best added to frac or flush water as water is transferred. Loadings as low as 1 gpt have been shown to be effective in relatively clean water. Dosages as high as 1 gpt may be required in badly contaminated waters.
Density in Sp.Gr.	0.95
Specs	Clear colorless liquid-Water soluble
	Buffer-4L, High pH (sodium hydroxide)
FC5528	
General Information	Buffer-4L, liquid caustic is used in water base fluid to increase the pH.
Uses & Applications	Buffer-4L, liquid caustic are used as increase pff in cleanup and stimulation fluids when required.
Density in Sp.Gr.	1.53
Specs	Clear liquid-Water soluble
	XLB-1, Self Buffered Borate Crosslinker
FC5500 General Information	XLB-1 is a self buffering, highly concentrated borate crosslinker for fracturing fluids. It requires no pH control additive.
Uses & Applications	Normal loadings for XLB-1 range from ,6 to 1,4 gpt when used in 30 to 35 ppt guar based gel, Higher loadings may be needed in cold weather or with "on the fly" liquid gelling agents where incomplete hydration of the guar may be occurring. It can be broken with oxidizing breakers or high pH enzyme breakers,
Density in Sp.Gr.	1.303
Specs	Clear colorless liquid-Water soluble
	B-4LE, High pH/Low Temp. <140°F Enzyme Breaker
FC5478 General Information	B-4L is a liquid enzyme breaker designed specifically for borate crosslinked fluid with pH of up to 10.
Uses & Applications	B-4L is typically loaded at .2 to 2 gpt. B-4L has a shelf life of 90 days.
Density in Sp.Gr.	1.12 RECEIVED
Specs	Light brown liquid-Water soluble

PRODUCT DESCRIPTION

	B-1, Oxidizer Breaker (AP)
FC5475	
General Information	B-1, APS is an oxidative breaker for fracturing fluids at low to moderate temperatures
Uses & Applications	B-1, APS is typically used in fracturing treatments at loadings of .2 to 2 ppt of fluid. Fluid temperatures most appropriate for Ammonium persulfate are from around 80° F to 190° F.
Density in Sp.Gr.	1.98
Specs	White granules-Water soluble
	KCL-2Sub, KCl Substitute (anionic product tolerant)
FC5301 General Information	KCL-2Sub is a slightly cationic highly concentrated liquid potassium chloride substitute for oilfield use. Unlike many other KCl substitutes, KCL Substitute is very low in toxicity and contains no surfactants. KCL-2Sub is a 70% Choline Chloride base clay protection product. KCL-2Sub can be used with an Anionic Friction Reducer with little to no effect on the efficiency of the anionic friction reducer.
Uses & Applications	KCL-2Sub can be used in any application where the stabilization of formation clays are required. KCL Substitute typical loadings of 5 to 1 gpt will give the base fluid the equivalent clay stabilization of 2% dry potassium chloride in most formations.
Density in Sp.Gr.	1.13
Specs	Clear liquid-Water soluble
General Information	
Uses &	
Applications	
Density in Sp.Gr.	
Specs	
General	
Information	
Uses &	
Applications	
Density in Sp.Gr.	
Specs	
General	
Information	
Har - 0	
Uses & Applications	
Density in Sp.Gr.	
Specs	
General Information	
Uses &	
Applications	
Density in Sp.Gr.	RECEIVED
Specs	ALCEIVED.

MONTANA SAGE GROUSE HABITAT CONSERVATION PROGRAM

STEVE BULLOCK, GOVERNOR

1539 ELEVENTH AVENUE

STATE OF MONTANA

PHONE: (406) 444-0554 FAX: (406) 444-6721 PO BOX 201601 HELENA, MONTANA 59620-1601

Project 2838
Governor's Executive Orders 12-2015 and 21-2015
(Denbury) BCU 904 - Fracture Stimulate
API# 25-075-21734

Naomi Johnson 5320 Legacy Drive Plano, TX 75024 RECEIVED

MAR 1 3 2018

MONTANA BOARD OF OIL & GAS CONSERVATION • BILLINGS

March 12, 2018

Dear Ms. Johnson,

The Montana Sage Grouse Habitat Conservation Program received a request for consultation and review of your project or proposed activity on March 6, 2018. Based on the information provided, all or a portion of this project is located within General Habitat for sage grouse.

Executive Orders 12-2015 and 21-2015 set forth Montana's Sage Grouse Conservation Strategy. Montana's goal is to maintain viable sage grouse populations and conserve habitat so that Montana maintains flexibility to manage our own lands, our wildlife, and our economy and a listing under the federal Endangered Species Act is not warranted in the future.

The program has completed its review, including:

Project Description:

Project Type: Energy - Oil/Gas **Project Disturbance:** 0.28 Acres

Construction Timeframes: March 2018 to March 2018, Temporary (< 1 Year) Disturbance Timeframes: March 2018 to March 2018, Temporary (< 1 Year))

Project Location:

Legal: Township 9 South, Range 54 East, Section 9

County: Powder River Ownership: Private

Executive Orders 12-2015 and 21-2015 Consistency:

The project proposes to conduct well work in designated General Habitat for sage grouse.

Denbury Inc. proposes using a work over rig to perform well work on an existing well within an existing well site. There will be no ground disturbance. Well work will only take a few days to complete.

Based on the information you provided, your project is not within two miles of an active sage grouse lek

Recommendations:

These stipulations are designed to maintain existing levels of suitable sage grouse habitat by managing uses and activities in sage grouse habitat to ensure the maintenance of sage grouse abundance and distribution in Montana. Development should be designed and managed to maintain populations and sage grouse habitats.

• Weed management is required within General Habitat for sage grouse. Reclamation of disturbed areas must include control of noxious weeds and invasive plant species, including cheatgrass (*Bromus tectorum*) and Japanese brome (*Bromus japonicas*).

Your activities are consistent with the Montana Sage Grouse Conservation Strategy. Your proposed project or activity may need to obtain additional permits or authorization from other Montana state agencies or possibly federal agencies. They are very likely to request a copy of this consultation letter, so please retain it for your records.

Please be aware that if the location or boundaries of your proposed project or activity change in the future, or if new activities are proposed within one of the designated sage grouse habitat areas, please visit https://sagegrouse.mt.gov/projects/ and submit the new information.

Thanks for your interest in sage grouse and your commitment to taking the steps necessary to ensure Montana's Sage Grouse Conservation Strategy is successful.

Sincerely,

Carolyn Sime

Montana Sage Grouse Habitat Conservation Program Manager

cc: Jim Halverson

Administrator Montana Board of Oil and Gas 2635 St. Johns Ave.

Billings, MT 59102

RECEIVED

MAR 1 3 2018

MONTANA BOARD OF OIL & GAS CONSERVATION . BILLINGS

